Search
Clear search
Close search
Main menu
Google apps
3 datasets found
  1. W

    PAN-WVC-10

    • webis.de
    • anthology.aicmu.ac.cn
    3341488
    Updated 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Potthast; Benno Stein (2010). PAN-WVC-10 [Dataset]. http://doi.org/10.5281/zenodo.3341488
    Explore at:
    3341488Available download formats
    Dataset updated
    2010
    Dataset provided by
    University of Kassel, hessian.AI, and ScaDS.AI
    The Web Technology & Information Systems Network
    Bauhaus-Universität Weimar
    Authors
    Martin Potthast; Benno Stein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The PAN Wikipedia vandalism corpus 2010 (PAN-WVC-10) is a corpus for the evaluation of automatic vandalism detectors for Wikipedia. For research purposes the corpus can be used free of charge.

  2. W

    Webis-WVC-07

    • webis.de
    3341473
    Updated 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Potthast; Benno Stein (2007). Webis-WVC-07 [Dataset]. http://doi.org/10.5281/zenodo.3341473
    Explore at:
    3341473Available download formats
    Dataset updated
    2007
    Dataset provided by
    University of Kassel, hessian.AI, and ScaDS.AI
    The Web Technology & Information Systems Network
    Bauhaus-Universität Weimar
    Authors
    Martin Potthast; Benno Stein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This corpus is outdated. Please use its successors PAN-WVC-10 and PAN-WVC-11.

  3. Webis Wikipedia Vandalism Corpus (Webis-WVC-07)

    • zenodo.org
    zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Potthast; Martin Potthast; Robert Gerling; Benno Stein; Benno Stein; Robert Gerling (2020). Webis Wikipedia Vandalism Corpus (Webis-WVC-07) [Dataset]. http://doi.org/10.5281/zenodo.3341473
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Potthast; Martin Potthast; Robert Gerling; Benno Stein; Benno Stein; Robert Gerling
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This corpus is outdated. Please use its successors PAN-WVC-10 and PAN-WVC-11.

    The Webis Wikipedia Vandalism Corpus (Webis-WVC-07) is a corpus for the evaluation of automatic vandalism detection algorithms for Wikipedia. For research purposes the corpus can be used free of charge.

    The corpus is the first standardized test collection for the comparison of vandalism detection algorithms. It comprises 940 edits from which 301 are marked as vandalism by human evaluators.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Martin Potthast; Benno Stein (2010). PAN-WVC-10 [Dataset]. http://doi.org/10.5281/zenodo.3341488

PAN-WVC-10

Explore at:
49 scholarly articles cite this dataset (View in Google Scholar)
3341488Available download formats
Dataset updated
2010
Dataset provided by
University of Kassel, hessian.AI, and ScaDS.AI
The Web Technology & Information Systems Network
Bauhaus-Universität Weimar
Authors
Martin Potthast; Benno Stein
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The PAN Wikipedia vandalism corpus 2010 (PAN-WVC-10) is a corpus for the evaluation of automatic vandalism detectors for Wikipedia. For research purposes the corpus can be used free of charge.