Search
Clear search
Close search
Main menu
Google apps
2 datasets found
  1. W

    Webis-CausalQA-22

    • webis.de
    • anthology.aicmu.ac.cn
    7186761
    Updated 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast (2022). Webis-CausalQA-22 [Dataset]. http://doi.org/10.5281/zenodo.7186761
    Explore at:
    7186761Available download formats
    Dataset updated
    2022
    Dataset provided by
    Universität Paderborn
    The Web Technology & Information Systems Network
    Friedrich Schiller University Jena
    Combinatorial Algebra Lab, Ural Federal University
    Bauhaus-Universität Weimar
    Leipzig University and Friedrich Schiller University Jena
    University of Kassel, hessian.AI, and ScaDS.AI
    Authors
    Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets.

  2. Webis Causal Question Answering 2022

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Bondarenko; Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Stefan Heindorf; Lukas Blübaum; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Benno Stein; Benno Stein; Pavel Braslavski; Pavel Braslavski; Matthias Hagen; Matthias Hagen; Martin Potthast; Martin Potthast; Magdalena Wolska; Lukas Blübaum (2022). Webis Causal Question Answering 2022 [Dataset]. http://doi.org/10.5281/zenodo.7186761
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 23, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Bondarenko; Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Stefan Heindorf; Lukas Blübaum; Axel-Cyrille Ngonga Ngomo; Axel-Cyrille Ngonga Ngomo; Benno Stein; Benno Stein; Pavel Braslavski; Pavel Braslavski; Matthias Hagen; Matthias Hagen; Martin Potthast; Martin Potthast; Magdalena Wolska; Lukas Blübaum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets. This dataset was developed to support the development of tailored approaches that can answer causal questions.

    Overview:

    The directory "input" contains the train and validation splits (used for evaluation), the directory "output" contains the evaluation results, and the directory "models" includes the fine-tuned checkpoints.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast (2022). Webis-CausalQA-22 [Dataset]. http://doi.org/10.5281/zenodo.7186761

Webis-CausalQA-22

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
7186761Available download formats
Dataset updated
2022
Dataset provided by
Universität Paderborn
The Web Technology & Information Systems Network
Friedrich Schiller University Jena
Combinatorial Algebra Lab, Ural Federal University
Bauhaus-Universität Weimar
Leipzig University and Friedrich Schiller University Jena
University of Kassel, hessian.AI, and ScaDS.AI
Authors
Alexander Bondarenko; Magdalena Wolska; Stefan Heindorf; Pavel Braslavski; Benno Stein; Matthias Hagen; Martin Potthast
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The Webis Causal Question Answering 2022 (Webis-CausalQA-22) corpus comprises 1.1M causal question-answer pairs collected from the public QA datasets.