Search
Clear search
Close search
Main menu
Google apps
100+ datasets found
  1. G

    TerraClimate: climat mensuel et bilan hydrique climatique pour les surfaces...

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Université de Californie à Merced, TerraClimate: climat mensuel et bilan hydrique climatique pour les surfaces terrestres mondiales, Université d'Idaho [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE?hl=fr
    Explore at:
    Dataset provided by
    Université de Californie à Merced
    Time period covered
    Jan 1, 1958 - Dec 1, 2024
    Area covered
    Earth
    Description

    TerraClimate est un ensemble de données sur le climat et l'équilibre hydrique climatique mensuels pour les surfaces terrestres mondiales. Il utilise une interpolation assistée par le climat, combinant des normales climatologiques à haute résolution spatiale de l'ensemble de données WorldClim, avec des données à résolution spatiale plus grossière, mais à évolution temporelle, de CRU Ts4.0 et de la réanalyse japonaise sur 55 ans (JRA55). Conceptuellement, la procédure applique des valeurs interpolées …

  2. d

    Data from: Daily precipitation data from recording rain gages (RRG) at...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Daily precipitation data from recording rain gages (RRG) at Coweeta Hydrologic Lab, North Carolina [Dataset]. https://catalog.data.gov/dataset/daily-precipitation-data-from-recording-rain-gages-rrg-at-coweeta-hydrologic-lab-north-car-ca2dc
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    U.S. Forest Service
    Area covered
    North Carolina
    Description

    These data include daily precipitation measurements from nine different recording rain gages (RRG) at Coweeta Hydrologic Laboratory in Macon County, North Carolina, USA. These stations are operated by the Southern Research Station, USDA Forest Service. Data include total daily precipitation for the following recording rain gages: RRG05 (1992-2017), RRG06 (1936-2017), RRG12 (1942-2017), RRG13 (1942-2017), RRG20 (1962-2017), RRG31 (1958-2017), RRG41 (1958-2017), RRG55 (1990-2017), and RRG96 (1943-2017).

  3. a

    Accumulated Precipitation / Précipitations accumulées

    • catalogue.arctic-sdi.org
    Updated May 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Accumulated Precipitation / Précipitations accumulées [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/resources/datasets/6696f9de-c576-4f96-aa25-7bd9515ab611
    Explore at:
    Dataset updated
    May 27, 2022
    Description

    Accumulated Precipitation represents the amount of total precipitation (solid and/or liquid in mm) which has been recorded over a given period of time. Products are produced for the following timeframes: Agricultural Year, Growing Season and Winter Season as well as rolling products for 7, 14, 30, 60, 90, 180, 270, 365, 730, 1095, 1460 and 1825 days. These values are intended to provide users with a general idea of the amount of precipitation that has been received by a region over the given timeframe. For more information, visit: http://open.canada.ca/data/en/dataset/708992ad-bc24-4d0d-a087-17b7b5fd4d4d / Les précipitations accumulées représentent la hauteur totale de précipitations (solide et/ou liquide en mm) qui a été enregistrée sur une durée donnée. Les produits sont générés pour les périodes suivantes : L'année agricole, la saison de croissance et la saison hivernale ainsi que les produits roulants pour les jours 7, 14, 30, 60, 90, 180, 270, 365, 730, 1095, 1460 et 1825. Ces valeurs visent à donner aux utilisateurs une idée générale de la hauteur de précipitations reçue dans une région sur une période donnée. Pour plus d'information, consulter : http://ouvert.canada.ca/data/fr/dataset/708992ad-bc24-4d0d-a087-17b7b5fd4d4d

  4. d

    Pluviométrie

    • data.gouv.fr
    • opendata.hauts-de-seine.fr
    • +4more
    csv, json
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hauts-de-Seine le Département (2025). Pluviométrie [Dataset]. https://www.data.gouv.fr/en/datasets/pluviometrie/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Hauts-de-Seine le Département
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Pluviométrie quotidienne mesurée par les pluviographes répartis sur le territoire des Hauts-de-Seine. Dans le cadre de la gestion du réseau départemental d'assainissement, le Département dispose de plusieurs pluviographes répartis sur son territoire afin de mesurer les précipitations. Ces mesures pluviométriques sont exploitées en temps réel dans le cadre de la gestion des ouvrages d'assainissement et en temps différé concernant les études relatives au schéma d'assainissement départemental. Observations particulières L'absence de mesure sur un pluviographe se traduit par une valeur de cellule "vide" ou "nulle". En effet, dans le cas d'une avarie ou d'un problème technique rencontré, il se peut que les mesures ne soient pas remontées. La localisation des pluviographes est disponible sur la plateforme dans le jeu de données "Pluviographes". L'identifiant du pluviographe permet d'effectuer le lien entre les mesures de pluviométrie et les pluviographes. Données connexes Les pluviographes Localisation des pluviographes gérés par le Département des Hauts-de-Seine

  5. Precipitations Totals from GPM IMERG Late (inches) August 1 - 7, 2024, for...

    • hub.arcgis.com
    • disasters.amerigeoss.org
    • +1more
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2024). Precipitations Totals from GPM IMERG Late (inches) August 1 - 7, 2024, for Tropical Cyclone Debby [Dataset]. https://hub.arcgis.com/maps/a0d61afe89e74c0a97b4997b573261b3
    Explore at:
    Dataset updated
    Aug 13, 2024
    Dataset provided by
    https://arcgis.com/
    Authors
    NASA ArcGIS Online
    Area covered
    Atlantic Ocean, North Atlantic Ocean, North America
    Description

    Dates of Images:August 1 - 7, 2024Summary:This data shows the accumulated amounts of precipitation, in inches, from all days in the period August 1 - 7, 2024, from GPM IMERG Late Precipitation V07. The storm track and pressure is from August 1 - 7, 2024. Suggested Use:The darkest red colors represent amounts in the range 10 - 30 inches, received for the 7 days of the indicated period. Densely spaced symbols of storm pressure indicate where the storm was moving very slowly. One of the slowest periods was exactly when Debby was making landfall as Category 1 Hurricane over the big bend of Florida.Satellite/Sensor:Global Precipitation Measurements (GPM) IMERGStorm track and storm pressure: Weather UndergroundResolution:10 kmCredits:Huffman, G.J., E.F. Stocker, D. T. Bolvin, E.J. Nelkin, Jackson Tan (2024), GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V07, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: 8/8/2024, 10.5067/GPM/IMERGDL/DAY/07Esri REST Endpoint:See URL section on right side of pageWMS Endpoint:https://maps.disasters.nasa.gov/ags03/services/tropical_cyclone_debby_2024/PrecipitationsTotals_GPMIMERG_August2024/MapServer/WMSServerData Download:https://maps.disasters.nasa.gov/download/gis_products/event_specific/2024/tropical_cyclone_debby_202408/precipitation/

  6. Precipitation - 1 hour precipitation accumulations from climatological...

    • dataplatform.knmi.nl
    • ckan.mobidatalab.eu
    • +3more
    Updated Sep 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dataplatform.knmi.nl (2017). Precipitation - 1 hour precipitation accumulations from climatological gauge-adjusted radar dataset for The Netherlands (1 km) in KNMI HDF5 format [Dataset]. https://dataplatform.knmi.nl/dataset/rad-nl25-rac-mfbs-01h-2-0
    Explore at:
    Dataset updated
    Sep 27, 2017
    Dataset provided by
    Royal Netherlands Meteorological Institutehttp://www.knmi.nl/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Netherlands
    Description

    Climatological radar rainfall dataset of 1 hour precipitation depths at a 1 km grid, which have been adjusted employing validated and complete rain gauge data from both KNMI rain gauge networks. This dataset is updated once a month providing data up to a few months ago.

  7. Data from: Bias-corrected monthly precipitation data over South Siberia for...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Voropay N.N.; Voropay N.N.; Ryazanova A.A.; Ryazanova A.A.; Dyukarev E.A.; Dyukarev E.A. (2021). Bias-corrected monthly precipitation data over South Siberia for 1979-2019 [Dataset]. http://doi.org/10.5281/zenodo.4472614
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 28, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Voropay N.N.; Voropay N.N.; Ryazanova A.A.; Ryazanova A.A.; Dyukarev E.A.; Dyukarev E.A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Central Siberia
    Description

    Bias-Corrected Precipitation data over South Siberia (CPSS 1.2) contains monthly precipitation data for the area within the coordinates 50–65 N, 60–120 E for the period from January 1979 to December 2019. CPSS data were combined from monthly total precipitation data from ERA5 reanalysis European Centre for Medium-Range Weather Forecasts (Copernicus Climate Change…, 2017) and precipitation data records from ground weather stations (Il’in et al., 2013). The ERA5 data were scaled according to the derived scale coefficient. The linear scaling coefficient for each month and weather station were calculated and extrapolated to the study area using the ordinary kriging method. Data spatial resolution is 0.25° in the latitude and 0.25° in the longitude. CPSS reproduces the spatial variability of precipitation more precisely than can be done from the weather station observation network. The CPSS dataset will be useful for the study of extreme precipitation events and allow for more accurate hydrologic risk assessment at a regional level based on climate model results. Data provided in NetCDF (Network Common Data Form) format.

    Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), Available at https://cds.climate.copernicus.eu/cdsapp#!/home

    Il’yin, B.M., Bulygina, O.N., Bogdanova, E.G, Veselov, V.M. and Gavrilova, S.Y., 2013. Dataset of monthly precipitation totals, with the elimination of systematic errors of precipitation gauges. Available at http://meteo.ru/data/506-mesyachnye-summy-osadkov-s-ustraneniem-sistematicheskikh-pogreshnostej-osadkomernykh-priborov

  8. dop_cdom_arome_tpt2 : 15' Surface total cumulative precipitations and 2m...

    • wdc-climate.de
    Updated Jun 8, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seity, Yann (2007). dop_cdom_arome_tpt2 : 15' Surface total cumulative precipitations and 2m temperature [Dataset]. https://www.wdc-climate.de/ui/entry?acronym=dop_cdom_arome_tpt2
    Explore at:
    Dataset updated
    Jun 8, 2007
    Dataset provided by
    World Data Centerhttp://www.icsu-wds.org/
    Authors
    Seity, Yann
    License

    http://cops.wdc-climate.de/http://cops.wdc-climate.de/

    Time period covered
    Jun 1, 2007 - Aug 31, 2007
    Area covered
    Variables measured
    multiple variables
    Description

    Surface total cumulative precipitations and 2m temperature (every 15')

    Note: Data for 15th of July 2007 on CDOM is not valid.

    Note that, by mistake, data from 2007070200 was archived in this record. The valid data for 2007071500 is not available in this data base.

  9. n

    NEON (National Ecological Observatory Network) Precipitation (DP1.00006.001)...

    • data.neonscience.org
    zip
    Updated Jan 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NEON (National Ecological Observatory Network) Precipitation (DP1.00006.001) [Dataset]. https://data.neonscience.org/data-products/DP1.00006.001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 18, 2025
    License

    https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation

    Time period covered
    Dec 2013 - Feb 2025
    Area covered
    Description

    Bulk precipitation collected using up to two methods - secondary tipping buckets and throughfall tipping buckets. NOTE: primary weighing gauge precipitation has moved to DP1.00044.001: "Precipitation - weighing gauge". Secondary and throughfall bulk precipitation is determined at one- and thirty-minute intervals.

  10. Yearly quantity of precipitations in Romania 2023, by meteorological station...

    • statista.com
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Yearly quantity of precipitations in Romania 2023, by meteorological station [Dataset]. https://www.statista.com/statistics/1138896/romania-quantity-of-precipitations-by-meteorological-station/
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Romania
    Description

    The highest amount of precipitations in 2023 was recorded in the Bucegi Mountains, at the meteorological station in Peak Omu, totaling 926.9 millimeters. By contrast, the lowest amount was reported in Buzău.

  11. T

    Burundi Average Precipitation

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +16more
    csv, excel, json, xml
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Burundi Average Precipitation [Dataset]. https://tradingeconomics.com/burundi/precipitation
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    Burundi
    Description

    Precipitation in Burundi decreased to 1277.52 mm in 2023 from 1349.36 mm in 2022. This dataset includes a chart with historical data for Burundi Average Precipitation.

  12. n

    SBU Pluvio Precipitation Gauge IMPACTS

    • cmr.earthdata.nasa.gov
    • earthdata.nasa.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SBU Pluvio Precipitation Gauge IMPACTS [Dataset]. http://doi.org/10.5067/IMPACTS/PLUVIO/DATA101
    Explore at:
    Dataset updated
    Jun 4, 2024
    Time period covered
    Jan 7, 2020 - Mar 2, 2023
    Area covered
    Description

    The SBU Pluvio Precipitation Gauge IMPACTS dataset consists of precipitation intensity and precipitation accumulation collected using the OTT Pluvio2 weighing rain gauge during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. NASA’s Earth Venture program funded IMPACTS is the first comprehensive study of East Coast snowstorms in 30 years. The campaign aimed to (1) Provide observations critical to understanding the mechanisms of snowband formation, organization, and evolution; (2) Examine how the microphysical characteristics and likely growth mechanisms of snow particles vary across snowbands; and (3) Improve snowfall remote sensing interpretation and modeling to significantly advance prediction capabilities. Data files in this dataset are available in ASCII-CSV format from January 7, 2020, through March 2, 2023.

  13. Precipitation time-series – Central Coast and Quadra Island – 2013 - 2019...

    • catalogue.hakai.org
    html
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ray Brunsting; Shawn Hateley; Emily Haughton; William Floyd (2025). Precipitation time-series – Central Coast and Quadra Island – 2013 - 2019 Version 1.0 [Dataset]. http://doi.org/10.21966/XNH1-TP28
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    Hakai Institutehttps://www.hakai.org/
    Authors
    Ray Brunsting; Shawn Hateley; Emily Haughton; William Floyd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 9, 2013 - Present
    Area covered
    Central Coast, Quadra Island, Quadra Island
    Variables measured
    Other
    Description

    Cet ensemble de données comprend 5 ans de données de précipitations de qualité contrôlée recueillies à 18 stations métrologiques sur les îles Calvert et Hécate, 1 sur la rivière Koeye, 1 sur l'île Ethel à Rivers Inlet, et 1 sur l'île Quadra sur la côte de la Colombie-Britannique. Les méthodes de contrôle et d'assurance de la qualité des données sont décrites dans le document README d'accompagnement.

    Les données sont collectées dans le cadre du réseau d'observation climatique et hydrométrique de Hakai, qui est un réseau de surveillance continue qui collecte des données en temps quasi réel fournissant de nombreuses utilisations opérationnelles pour le grand public et pour le trafic maritime et aérien.

  14. a

    Precipitation Percentiles / Centile des précipitations

    • catalogue.arctic-sdi.org
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Precipitation Percentiles / Centile des précipitations [Dataset]. http://catalogue.arctic-sdi.org/geonetwork/srv/resources/datasets/04c4054d-bdf8-435f-9153-e664ae8b42f0
    Explore at:
    Dataset updated
    Mar 18, 2025
    Description

    Precipitation percentile products are created by comparing the accumulated precipitation amounts (mm) for the time period being processed against all available historical information from the same window of time. This comparison will rank the current amount and assign it a percentile value determined by where it falls against the historic record. Products are produced for the following timeframes: Agricultural Year, Growing Season, and Winter Season as well as rolling products for 30, 60, 90, and 180 days. These values are intended to provide users with a general idea of the how the amount of precipitation that has been received by a region over the given timeframe compares to the amount which has been received in the historical record. For more information, visit: https://open.canada.ca/data/en/dataset/78b65ae0-fe1e-40ac-9d1d-ed4c7aaa0684 / Centile des précipitationssont établies en comparant les hauteurs de précipitations accumulées (mm) pour la période traitée à toutes les données historiques disponibles pour la même période. Cette comparaison classera le montant actuel et lui attribuera une valeur centile déterminée selon le point où elle tombe par rapport au record historique. Les produits sont générés pour les périodes suivantes : Année agricole, saison de croissance et la saison hivernale ainsi que les produits roulants pour les jours 30, 60, 90, et 180. Ces valeurs visent à donner aux utilisateurs une idée générale de la façon dont la hauteur de précipitations reçue dans une région sur une période donnée se compare à la hauteur reçue selon les données historiques. Pour plus d'information, consulter : http://ouvert.canada.ca/data/fr/dataset/78b65ae0-fe1e-40ac-9d1d-ed4c7aaa0684

  15. c

    Precipitation monthly and daily gridded data from 2000 to 2017 derived from...

    • cds.climate.copernicus.eu
    netcdf-4
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Precipitation monthly and daily gridded data from 2000 to 2017 derived from satellite microwave observations [Dataset]. http://doi.org/10.24381/cds.ada9c583
    Explore at:
    netcdf-4Available download formats
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf

    Time period covered
    Jan 1, 2000 - Dec 31, 2017
    Description

    This dataset provides global estimates of daily accumulated and monthly means of precipitation. The precipitation estimates are based on a merge of passive microwave observations from two different radiometer classes operating on multiple Low Earth Orbit (LEO) satellites. Spaceborne passive microwave (MW) provides the most effective measurements for the remote sensing of precipitation because the MW upwelling radiation is directly responsive to the cloud microphysical structure and, in particular, to the emission and scattering properties of precipitation-size hydrometeors (solid and liquid). However, they are available at low spatial and temporal resolution, due to the limited number of passes per day (depending on latitude and number of platforms) at each location. On the other hand, infrared (IR) sensors, available also on geostationary platforms, provide measurements that mostly respond to upper-level cloud structure, but at much higher temporal and spatial resolution. Since precipitation is not directly sensed in the infrared, these observations are often merged with microwave-based precipitation estimates and rain gauges. A precipitation product merging IR and MW is also available on the Climate Data Store: GPCP precipitation dataset. The two different radiometer classes used in the present Copernicus micrOwave-based gloBal pRecipitAtion (COBRA) dataset are: i) Conically scanning MW imagers; observations obtained by applying methodologies of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) in the Satellite Application Facility on Climate Monitoring (CM SAF). ii) Cross-track scanning MW sounders; observations obtained through the dedicated Passive microwave Neural network Precipitation Retrieval for Climate Applications (PNPR-CLIM) algorithm. This datset is independent of IR imagery and rain-gauge observations. A pure passive MW-based precipitation dataset overcomes the challenges and limitations of precipitation estimates based on IR observations, and the issues related to the inadequacy of the rain gauge networks in some regions and their almost complete absence over the ocean. The main limitations, however, are linked to the varying (in time and space) revisiting time of the LEO satellites and low temporal sampling compared to geostanionary IR observations. This dataset is produced by the Copernicus Climate Change Service (C3S).

  16. Precipitation - 5 minute precipitation accumulations from climatological...

    • dataplatform.knmi.nl
    • ckan.mobidatalab.eu
    • +2more
    Updated Sep 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    knmi.nl (2017). Precipitation - 5 minute precipitation accumulations from climatological gauge-adjusted radar dataset for The Netherlands (1 km, extended mask) in KNMI HDF5 format [Dataset]. https://dataplatform.knmi.nl/dataset/rad-nl25-rac-mfbs-em-5min-2-0
    Explore at:
    Dataset updated
    Sep 27, 2017
    Dataset provided by
    Royal Netherlands Meteorological Institutehttp://www.knmi.nl/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Climatological radar rainfall dataset of 5 minute precipitation depths at a 1-km grid, which have been adjusted employing validated and complete rain gauge data from both KNMI rain gauge networks. Same dataset as "RAD_NL25_RAC_MFBS_5min", except that now an Extended Mask (EM) has been applied to this dataset. As a result, data are also available up to tens of kilometers away from the land surface of the Netherlands, i.e. above Belgium, Germany, and above open water. This dataset is updated once a month providing data up to a few months ago.

  17. Monthly precipitations in Morocco per commune

    • kaggle.com
    Updated Feb 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ayoub Fatihi (2022). Monthly precipitations in Morocco per commune [Dataset]. https://www.kaggle.com/datasets/yobfat/monthly-precipitations-in-morocco-per-communes/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 26, 2022
    Dataset provided by
    Kaggle
    Authors
    Ayoub Fatihi
    Area covered
    Morocco
    Description

    Context

    As a part of the course of Web-Mapping (2021-22) by Prof Hicham HAJJI: we choosed to devellop a Full stack web app to visualize and forecast precipitations in Morocco. We needed some precipitations data for the forecasting part.

    Content

    Monthly precipitations (rainfall) in Morocco per communes from 2000 to 2018.

    Source

    WorldClim (https://worldclim.org/data/monthlywth.html)

  18. t

    Precipitation

    • data.trca.ca
    csv
    Updated Oct 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Flood Risk Management (2021). Precipitation [Dataset]. https://data.trca.ca/dataset/precipitation
    Explore at:
    csv(13939512), csv(4319199), csv(19747446), csv(4323101), csv(41689736), csv(38444711), csv(24727062), csv(448101), csv(4809247), csv(54542462), csv(44327737), csv(17031605), csv(19943725), csv(40707022), csv(28575459), csv(4606328), csv(20297062), csv(15851150), csv(25273192), csv(24486187), csv(12746117), csv(15904149), csv(20379260), csv(20218048), csv(4655), csv(20041481), csv(6468163), csv(27010113), csv(15016517), csv(20390915), csv(27692719), csv(37541703), csv(51818212), csv(31470012), csv(19940490), csv(42234903), csv(29265862), csv(34999130), csv(31421683), csv(22974586), csv(22468014), csv(28984245), csv(54182224), csv(38294115)Available download formats
    Dataset updated
    Oct 6, 2021
    Dataset provided by
    Flood Risk Management
    Description

    Precipitation gauge data from TRCA real time and manual monitoring networks. Data represents preceding 5 minute total (accumulated) rainfall in mm.

    Each file contains full period of record of published data. Files are updated annually.

  19. Rainfall

    • hub.tumidata.org
    url
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TUMI (2024). Rainfall [Dataset]. https://hub.tumidata.org/dataset/rainfall_monterrey
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Tumi Inc.http://www.tumi.com/
    Description

    Rainfall
    This dataset falls under the category Environmental Data Climate Data.
    It contains the following data: Precipitations and climatological analisys map, it wasn't possible to download it even though it's available
    This dataset was scouted on 2022-02-13 as part of a data sourcing project conducted by TUMI. License information might be outdated: Check original source for current licensing. The data can be accessed using the following URL / API Endpoint: https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx?ag=19039See URL for data access and license information.

  20. o

    Research Data supporting "A new interpretative framework for below-cloud...

    • explore.openaire.eu
    Updated Jan 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pascal Graf; Patrick Bertolini; Franziska Aemisegger; Heini Wernli (2018). Research Data supporting "A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain" [Dataset]. http://doi.org/10.3929/ethz-b-000271617
    Explore at:
    Dataset updated
    Jan 1, 2018
    Authors
    Pascal Graf; Patrick Bertolini; Franziska Aemisegger; Heini Wernli
    Description

    Abstract. Raindrops interact with water vapour in ambient air while sedimenting from the cloud base to the ground. They constantly exchange water molecules with the environment and, in sub-saturated air, they evaporate partially or entirely. The latter of these below-cloud processes is important for predicting the resulting surface rainfall amount and it influences the boundary layer profiles of temperature and moisture through to evaporative latent cooling and humidity changes. However, despite its importance, it is very difficult to quantify this process from observations. Stable water isotopes provide such information, as they are influenced by both rain evaporation and equilibration. This study elucidates this option by introducing a novel interpretation framework for stable water isotope measurements performed simultaneously at high temporal resolution in both near-surface vapour and rain. We refer to this viewing device as the ∆δ∆d-diagram, which shows the isotopic composition (δ2H, d-excess) of equilibrium vapour from precipitation samples relative to the ambient vapour. It is shown that this diagram facilitates the diagnosis of below-cloud processes and their effects on the isotopic composition of vapour and rain since equilibration and evaporation lead to different pathways in the two-dimensional phase space of the ∆δ∆d-diagram. For a specific cold front in Central Europe, the analysis shows that below-cloud processes lead to distinct and temporally variable imprints on the isotope signal in surface rain. The influence of evaporation on this signal is particularly strong during periods with a weak precipitation rate. After the frontal passage, the near-surface atmospheric layer is characterised by higher relative humidity and a lower melting layer, leading to weaker below-cloud evaporation and equilibration. Measurements from four cold frontal events reveal a surprisingly similar slope of ∆d/∆δ = −0.30 in the phase space, indicating a potentially characteristic signature of below-cloud processes for this type of rain events.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Université de Californie à Merced, TerraClimate: climat mensuel et bilan hydrique climatique pour les surfaces terrestres mondiales, Université d'Idaho [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE?hl=fr

TerraClimate: climat mensuel et bilan hydrique climatique pour les surfaces terrestres mondiales, Université d'Idaho

Related Article
Explore at:
57 scholarly articles cite this dataset (View in Google Scholar)
Dataset provided by
Université de Californie à Merced
Time period covered
Jan 1, 1958 - Dec 1, 2024
Area covered
Earth
Description

TerraClimate est un ensemble de données sur le climat et l'équilibre hydrique climatique mensuels pour les surfaces terrestres mondiales. Il utilise une interpolation assistée par le climat, combinant des normales climatologiques à haute résolution spatiale de l'ensemble de données WorldClim, avec des données à résolution spatiale plus grossière, mais à évolution temporelle, de CRU Ts4.0 et de la réanalyse japonaise sur 55 ans (JRA55). Conceptuellement, la procédure applique des valeurs interpolées …